21 research outputs found

    DiffMimic: Efficient Motion Mimicking with Differentiable Physics

    Full text link
    Motion mimicking is a foundational task in physics-based character animation. However, most existing motion mimicking methods are built upon reinforcement learning (RL) and suffer from heavy reward engineering, high variance, and slow convergence with hard explorations. Specifically, they usually take tens of hours or even days of training to mimic a simple motion sequence, resulting in poor scalability. In this work, we leverage differentiable physics simulators (DPS) and propose an efficient motion mimicking method dubbed DiffMimic. Our key insight is that DPS casts a complex policy learning task to a much simpler state matching problem. In particular, DPS learns a stable policy by analytical gradients with ground-truth physical priors hence leading to significantly faster and stabler convergence than RL-based methods. Moreover, to escape from local optima, we utilize a Demonstration Replay mechanism to enable stable gradient backpropagation in a long horizon. Extensive experiments on standard benchmarks show that DiffMimic has a better sample efficiency and time efficiency than existing methods (e.g., DeepMimic). Notably, DiffMimic allows a physically simulated character to learn Backflip after 10 minutes of training and be able to cycle it after 3 hours of training, while the existing approach may require about a day of training to cycle Backflip. More importantly, we hope DiffMimic can benefit more differentiable animation systems with techniques like differentiable clothes simulation in future research.Comment: ICLR 2023 Code is at https://github.com/jiawei-ren/diffmimic Project page is at https://diffmimic.github.io

    What Truly Matters in Trajectory Prediction for Autonomous Driving?

    Full text link
    In the autonomous driving system, trajectory prediction plays a vital role in ensuring safety and facilitating smooth navigation. However, we observe a substantial discrepancy between the accuracy of predictors on fixed datasets and their driving performance when used in downstream tasks. This discrepancy arises from two overlooked factors in the current evaluation protocols of trajectory prediction: 1) the dynamics gap between the dataset and real driving scenario; and 2) the computational efficiency of predictors. In real-world scenarios, prediction algorithms influence the behavior of autonomous vehicles, which, in turn, alter the behaviors of other agents on the road. This interaction results in predictor-specific dynamics that directly impact prediction results. As other agents' responses are predetermined on datasets, a significant dynamics gap arises between evaluations conducted on fixed datasets and actual driving scenarios. Furthermore, focusing solely on accuracy fails to address the demand for computational efficiency, which is critical for the real-time response required by the autonomous driving system. Therefore, in this paper, we demonstrate that an interactive, task-driven evaluation approach for trajectory prediction is crucial to reflect its efficacy for autonomous driving

    DaXBench: Benchmarking Deformable Object Manipulation with Differentiable Physics

    Full text link
    Deformable Object Manipulation (DOM) is of significant importance to both daily and industrial applications. Recent successes in differentiable physics simulators allow learning algorithms to train a policy with analytic gradients through environment dynamics, which significantly facilitates the development of DOM algorithms. However, existing DOM benchmarks are either single-object-based or non-differentiable. This leaves the questions of 1) how a task-specific algorithm performs on other tasks and 2) how a differentiable-physics-based algorithm compares with the non-differentiable ones in general. In this work, we present DaXBench, a differentiable DOM benchmark with a wide object and task coverage. DaXBench includes 9 challenging high-fidelity simulated tasks, covering rope, cloth, and liquid manipulation with various difficulty levels. To better understand the performance of general algorithms on different DOM tasks, we conduct comprehensive experiments over representative DOM methods, ranging from planning to imitation learning and reinforcement learning. In addition, we provide careful empirical studies of existing decision-making algorithms based on differentiable physics, and discuss their limitations, as well as potential future directions.Comment: ICLR 2023 (Oral
    corecore